Theoretical mass loss rates of cool main - sequence stars

نویسندگان

  • V. Holzwarth
  • M. Jardine
چکیده

Context. The stellar mass loss rate is important for the rotational evolution of a star and for its interaction with the circumstellar environment. The analysis of astrospheric absorption features enables an empirical determination of mass loss rates of cool stars other than the Sun. Aims. We develop a model for the wind properties of cool main-sequence stars, which comprises their wind ram pressures, mass fluxes, and terminal wind velocities. Methods. The wind properties are determined through a polytropic magnetised wind model, assuming power laws for the dependence of the thermal and magnetic wind parameters on the stellar rotation rate. We use the empirical data to constrain theoretical wind scenarios, which are characterised by different rates of increase of the wind temperature, wind density, and magnetic field strength. Results. Scenarios based on moderate rates of increase yield wind ram pressures in agreement with most empirical constraints, but cannot account for some moderately rotating targets, whose high apparent mass loss rates are inconsistent with observed coronal X-ray and magnetic properties. For fast magnetic rotators, the magneto-centrifugal driving of the outflow can produce terminal wind velocities far in excess of the surface escape velocity. Disregarding this aspect in the analyses of wind ram pressures leads to overes-timations of stellar mass loss rates. The predicted mass loss rates of cool main-sequence stars do not exceed about ten times the solar value. Conclusions. Our results are in contrast with previous investigations, which found a strong increase of the stellar mass loss rates with the coronal X-ray flux. Owing to the weaker dependence, we expect the impact of stellar winds on planetary atmospheres to be less severe and the detectability of magnetospheric radio emission to be lower then previously suggested. Considering the rotational evolution of a 1 M ⊙ star, the mass loss rates and the wind ram pressures are highest during the pre-main sequence phase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Winds of Main-Sequence Stars: Observational Limits and a Path to Theoretical Prediction

It is notoriously difficult to measure the winds of solar-type stars. Traditional spectroscopic and radio continuum techniques are sensitive to mass loss rates at least two to three orders of magnitude stronger than the Sun’s relatively feeble wind. Much has been done with these methods to probe the more massive outflows of younger (T Tauri) and older (giant, AGB, supergiant) cool stars, but th...

متن کامل

Angular momentum evolution of low-mass pre-main sequence stars via extreme coronal mass ejections

The angular momentum evolution of cool stars during the pre-main sequence phase of stellar evolution remains a major outstanding problem. Multiple processes are likely involved in the transfer of mass and angular momentum within and out of the star+disk system. The role of coronal mass ejections (CMEs), energetic events which shed mass and magnetic flux in the Sun, has yet to be fully explored ...

متن کامل

Coupled mass and angular momentum loss of massive main sequence stars

We investigate the interaction of mass loss and rotation during core hydrogen burning in massive stars. We compute their main sequence evolution assuming rigid rotation, and carry angular momentum as a passive quantity in the stellar interior but incorporate its effect on the stellar mass loss rate. We consider the example of a 60M star assuming various initial rotation rates. We show that rota...

متن کامل

Dust-enshrouded Asymptotic Giant Branch Stars in the Solar Neighbourhood

A study is made of a sample of 58 dust-enshrouded Asymptotic Giant Branch (AGB) stars (including 2 possible post AGB stars), of which 27 are carbon-rich and 31 are oxygen-rich. These objects were originally identified by Jura & Kleinmann as nearby (within about 1 kpc of the sun) AGB stars with high mass-loss rates (Ṁ > 10 M⊙yr ). Ground-based near-infrared photometry, data obtained by the IRAS ...

متن کامل

Stellar Winds from Massive Stars

We review the various techniques through which wind properties of massive stars – O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet (WR) stars and cool supergiants – are derived. The wind momentum-luminosity relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss rates of O stars and blue supergiants which is superior to previous parameterizations. Assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007